
J. Aquat. Plant Manage. 54: 78–86

Predicting drivers of nuisance macrophyte
cover in a regulated California stream using

boosted regression tree models
EMILY P. ZEFFERMAN AND DAVID J. HARRIS*

ABSTRACT

The tremendous cost and difficulty of controlling
submersed macrophyte proliferation in regulated waters
drives a need for ecologically based strategies to reduce
problematic macrophyte growth in the long term. Our study
investigated the extent and causes of excessive submersed
macrophyte growth in the Interdam Reach of Putah Creek
in central California, USA, where plant biomass and
propagules clog canal infrastructure downstream. In sum-
mer to fall 2011, we surveyed submersed macrophyte cover
and environmental factors, including canopy cover, water
velocity, depth, sediment nutrients, and substrate texture.
Eurasian watermilfoil (Myriophyllum spicatum L.) and western
waterweed [Elodea nuttallii (Planch.) St. John] were the most
abundant species, and along with five additional species
comprised our response variable of nuisance macrophyte cover.
Using boosted regression tree models, we identified the
abiotic factors most important in predicting nuisance
macrophyte cover as those associated with light availability
(sun hours and water depth) and flow (water velocity and
substrate texture). This machine learning–based modeling
approach enabled us to find biologically relevant thresholds
in predicted macrophyte cover that would have been
difficult or impossible to identify with standard linear
models. Overall, increasing canopy shading or water depth
beyond threshold values and increasing water velocity to
flush out fine sediments (e.g., channel narrowing) are likely
to be most effective in sustainably reducing nuisance
macrophyte abundance in the Interdam Reach. Because of
the cosmopolitan distributions of the most abundant
species found in this study, our findings have broader
relevance to water managers dealing with problem aquatic
vegetation in many other regions.

Key words: abiotic factors, aquatic weeds, Lake Solano,
machine learning models, Putah Creek, submersed macro-
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INTRODUCTION

Submersed macrophytes are natural components of
many lakes and streams, and they contribute to the
ecological health and productivity of aquatic ecosystems.
However, overabundance of submersed macrophytes im-
pairs ecosystem functioning and municipal, commercial,
and recreational activities (Anderson 2011). When sub-
mersed macrophytes overproliferate in a regulated water-
way, water resource managers face the difficult challenge of
reducing macrophyte biomass. Traditional methods of
submersed macrophyte control include mechanical removal
and herbicide use, both of which can cause collateral
damage to nontarget organisms (Nichols 1991). In addition,
these methods generally have only short-term effects, thus
requiring repeated and costly intervention (Anderson 2011).
To control submersed macrophyte growth in a sustainable
and cost-effective way, it is important to better understand
how the manipulation of physical or chemical conditions of
aquatic systems could reduce proliferation of submersed
macrophytes in the long term.

The goal of this study was to inform sustainable
management of nuisance aquatic vegetation in a regulated
section of Putah Creek, called the Interdam Reach, in
California, USA. Our objectives were to 1) document the
extent of vegetation growth in the Interdam Reach, 2)
identify the most important environmental factors driving
that growth, and 3) model how macrophyte cover is
predicted to vary over a range of these factors. To identify
important patterns and thresholds, we modeled our data
using boosted regression trees (BRTs), a relatively new
modeling technique that combines classification and re-
gression trees and machine learning to achieve high
predictive accuracy (Elith et al. 2008).

MATERIALS AND METHODS

Site description

Putah Creek flows from the California Coast Range to the
Yolo Bypass (Sacramento River floodplain) near Sacramen-
to, CA. In the 1950s, the U.S. Bureau of Reclamation began
the Solano Project to store and deliver water from Putah
Creek to municipal, industrial, and agricultural users in the
Sacramento Valley. Construction of the Monticello Dam in
1957 created the Lake Berryessa reservoir, which provides
up to 1.93 billion m3 of water storage (Harrison et al. 2001);
11 km downstream, construction of the Putah Creek
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Diversion Dam formed the Lake Solano reservoir, which
stores 888,000 m3 of water (Harrison et al. 2001). From the
Diversion Dam, most water is diverted south through the
Putah South Canal. The subject of this study, the Interdam
Reach (IDR), consists of the 6.6 km of stream habitat (Putah
Creek) and 4 km of slow-moving lacustrine habitat (Lake
Solano) between the Monticello and Putah Diversion dams
(Figure 1).

The two dams have altered the IDR flow regime: instead
of seasonal flooding in the winter, flows are typically highest
in the summer when water is released through the IDR to
the Putah South Canal for irrigation. Decreased flood
frequency and intensity in the IDR have caused sediment to
accumulate, particularly in the wide, shallow section of Lake
Solano, just upstream of the Putah Diversion Dam.
Submersed macrophytes are abundant in this reach.
Throughout the summer, tens of thousands of macrophyte
fragments flow into the Putah South Canal Headworks each
hour, clogging intake screens and infrastructure within the
canal (Northwest Hydraulic Consultants 2010). Seeds and
vegetative propagules establish and grow inside the canal
itself, and their decay impairs drinking water quality. As a
result, canal clean-outs must be conducted every year.
Finding long-term solutions for reducing macrophyte
biomass in the IDR by manipulating environmental factors
could reduce vegetation management costs and improve
ecosystem functioning.

Sampling methods

The two sections of the IDR were sampled in two stages:
Lake Solano, the deeper 4.0-km stretch of the IDR directly
upstream of the Putah Diversion Dam, was surveyed by
canoe from 23 to 26 August 2011; the 6.6-km stretch of

Putah Creek between Lake Solano and the Monticello Dam
was surveyed by foot on 12 to 21 November 2011. Repeat
surveys in Lake Solano in November 2011 showed very
similar percentage of macrophyte coverage in August and
November (Peffer 2013); therefore, we did not expect the
difference in sampling times to significantly affect our
results.

In Lake Solano, 24 transects were established across the
channel at 175-m intervals. In Putah Creek, 13 transects
across the channel were established, with locations based on
accessibility and the intention to sample physically variable
habitats. Three points were sampled (when possible) on each
transect, located 1 m inward from the each bank and in the
middle of the channel (Figure 1). In total, we sampled 72
points from Lake Solano and 31 points from Putah Creek.

At each sampling point, we measured the following:
percentage of cover by all macrophyte species found in a
0.25-m2 quadrat; qualitative estimate of substrate size class
using a modified Wentworth scale (Wentworth 1922) (Table
1); water velocity at 10 cm depth with a Student Stream
Flowmeter1; and water depth. In addition, we measured the
amount of canopy shading at each sampling point with a
Solar Pathfinder.2 Using the measure of canopy shading and
the coordinates of the sampling points, we calculated sun
hours—the average daily solar radiation reaching a location

Figure 1. Map of the Putah Creek Interdam Reach. Sampling points are marked with black diamonds; 103 points were sampled on 37 transects in 2011.
Inset map shows location of study system within California.

TABLE 1. SIZE CLASSES OF SUBSTRATES USED IN A SUBSTRATE QUALITATIVE ASSESSMENT

SCALE FOR THIS STUDY.

Substrate Type Size Distribution (mm)

Soft substrate (silt/clay) , 1/16
Sand 1/16–1
Gravel 1–64
Rock 64–256
Boulders . 256
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over 1 yr (kWh m�2 d�1)—with Solar Pathfinder Assistant PV
Software.2

We took sediment cores (when possible) measuring 5 cm
in diameter and ~ 15 cm deep at one randomly selected
point on each transect using an AMS Multi-stage sludge and
sediment sampler.3 We analyzed sediment samples for
nitrate, ammonium (KCl extraction), and plant-available
inorganic phosphorus (Olsen-P method; Murphy and Riley
1962). The University of California, Davis Analytical
Laboratory in Davis, CA (http://anlab.ucdavis.edu), analyzed
sediment total nitrogen and carbon (SOP 320; AOAC 1997)
and particle size distribution (SOP 470; Sheldrick and Wang
1993).

To characterize general water nutrient levels and clarity
during the study (not for use in the models), we took water
samples near the downstream, middle, and upstream
portions of Lake Solano and in two locations in Putah
Creek. These were analyzed for nitrate and ammonium
(SOP 847; American Public Health Association 1998a,b;
Knepel 2003) and orthophosphate (SOP 865.03; American
Public Health Association 1998c) by the University of
California, Davis Analytical Laboratory. We also measured
photosynthetically active radiation (PAR) at 0.5-m intervals
from the surface of the water to the bottom in the middle
point of each transect with a LI-COR LI-193 spherical
quantum sensor4 to calculate vertical extinction coeffi-
cients, kd (kd ¼ [ln Io � ln Iz]/z, where Io is the light intensity
just below the water’s surface, and Iz is the light intensity at
depth z).

Modeling approach

To explore the relationships between measured environ-
mental factors and macrophyte abundance in the IDR, we
created BRT models using R software (R version 2.15.2, R
Development Core Team, Vienna, Austria) with the gbm
package version 1.6 (Ridgeway 2013). In BRT modeling,
multiple decision trees, also called classification and regression
trees (CART), are combined into models with high predictive
accuracy using machine-learning algorithms. The basic
CART method involves iteratively splitting the data into
binary partitions based on a single explanatory variable
(e.g., macrophyte cover). Each split maximizes the homoge-
neity of the partitions, with the resulting model explaining
the maximum amount of variation in the overall data set
(for a statistical overview, see Breiman et al. 1984). Some
advantages of trees include their ability to model high-order
interactions, to incorporate any type of predictor variables,
and to handle missing data. Furthermore, trees do not
assume linear relationships between variables, rarely select
irrelevant predictors, and are insensitive to outliers (De’ath
and Fabricius 2000; Elith et al. 2008). However, trees
typically have low predictive ability and can be difficult to
interpret. The BRT method builds on the strengths of CART
by using boosting to improve predictive performance and
interpretability (De’ath 2007). In BRT modeling, boosting
refers to the process of creating many simple trees in
succession, with each tree built on the residual error of the
previous tree. The trees are then combined into a single
predictive model. The number of trees that comprise a

model and the shrinkage—the weight put on the previous
tree’s residual error at each iterative model fitting step—can
be optimized using cross-validation (Elith et al. 2008).
Multiple BRT models can be created, and averaging their
predictions leads to improved performance over a single
BRT model (De’ath 2007). This ensemble method differs
from traditional methods, which typically fit only one ‘‘best’’
model from the data.

We chose BRT to model our data because of the method’s
high predictive performance and because, compared with
traditional linear models, BRT is better able to identify
nonlinearities like threshold effects, which are common in
ecological data and important for management. In addition,
BRT commonly outperforms other complex, computation-
ally demanding methods (Leathwick et al. 2006, De’ath
2007). Elith et al. (2008) and De’ath (2007) provide thorough
overviews of this technique, including underlying theory,
comparisons to other statistical methods, visualization of
results, and examples using ecological data. To our
knowledge, this is the first example of BRT being used to
model macrophyte abundance; however, boosted regression
trees have been used for a variety of research questions,
including identifying determinants of marine fish richness
(Leathwick et al. 2006) and terrestrial plant diversity
(Thuiller et al. 2006), understanding effects of climate
change on bird distributions (Triviño et al. 2011), and
determining the roles of climate and human activity on the
spread of an invasive insect (Roura-Pascual et al. 2011).

We created 150 BRT models from bootstrapped samples
of the full data set. We resampled by transect, rather than by
individual points, to reduce fitting based on spatial
autocorrelation. As decided by the .632 bootstrap proce-
dure (Efron 1983), each model was based on 4,100 trees, with
each tree having two splits (three branches), and a shrinkage
value of 0.001. Each model was generated using approxi-
mately 63.2% of the data, allowing us to test the ability of
each model to predict the remaining (out-of-sample) data.

Predictor variables used in the models are presented in
Table 2 with summary statistics. All but three predictors
were continuous variables. System (Lake Solano or Putah
Creek) and Position (left, middle, or right sampling location
on a transect when facing upstream) were categorical.
Qualitatively assessed substrate was also treated as a
categorical variable. Because some sampling points had
more than one substrate class present, this variable was
input as the proportion of a given substrate class at each
sampling point, divided evenly among the number of
substrate types present. For example, if a point had both
classes 1 and 4, the substrate for that point was assigned as
50% substrate 1 and 50% substrate 4.

For our response variable of total nuisance macrophyte
abundance, we combined the percentage of cover for the
following submersed macrophyte species: eurasian water-
milfoil (Myriophyllum spicatum L.), leafy pondweed (Potamoge-
ton foliosus Raf.), sago pondweed [Stuckenia pectinata (L.)
Börner], horned pondweed (Zannichellia palustris L.), western
elodea [Elodea nuttallii (Planch.) St. John], curly pondweed
(Potamogeton crispus L.), and coontail (Ceratophyllum demersum
L.). These species made up most (~ 95%) of the submersed
macrophyte cover in the IDR and are the most problematic,
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either because of their extensive growth within the Putah
South Canal (first four species listed) or because they
produce a significant amount of floating plant material that
can clog screens at the canal Headworks (all seven species
listed), as determined by a prior vegetation monitoring
study and personal observations (Northwest Hydraulic
Consultants 2010, Peffer 2013). Mosses were excluded from
the calculation of total nuisance macrophyte cover because,
even though moss cover was often high on boulders, mosses
do not produce large quantities of biomass. The response
variable for the percentage of cover was converted to a
discrete variable composed of 20 ‘‘spaces’’ per sampling
point and was modeled as a binomial process, whereby each
space could be either occupied or not occupied by nuisance
macrophytes.

Using the BRT model results, we calculated relative
importance of each variable in predicting nuisance macro-
phyte cover with the summary function in the gbm package.
The relative importance of a variable describes the
percentage by which a model improves over a baseline
model by adding that variable. To quantify relative
importance, the number of times a predictor variable is
chosen for splitting the data is summed, and that number is
weighted by the squared improvement to each model
resulting from each split. These values are averaged over
all trees, and the relative importance of all predictors is
scaled to sum to 100 (Elith et al. 2008). For the six top
predictors, we modeled predicted macrophyte abundance
across the range of values found in the data set. By
averaging over all models, we obtained mean predictions,
50% confidence intervals (25 and 75% quantiles), and 95%
confidence intervals (2.5 and 97.5% quantiles).

Overall model performance was assessed using the .632
bootstrap method, which provides a good estimate of out-
of-sample prediction accuracy (Efron 1983). Because each of
the 150 BRT models was generated using only 63.2% of the
data, we could make R2 estimates of model performance
using both in-sample and out-of-sample prediction esti-
mates for each model. However, in-sample prediction tends
to be overconfident, whereas out-of-sample prediction
tends to be underconfident. The .632 bootstrap evaluation
method creates a weighted average R2 by combining in-

sample and out-of-sample R2 estimates, weighting each by
0.368 and 0.632, respectively.

RESULTS AND DISCUSSION

Background conditions

The percentage of cover by nuisance submersed macro-
phytes was high throughout the IDR, with 68 out of 103
sampled points having 80% or greater cover (Figure 2). In
both the Lake Solano and Putah Creek sections of the IDR,
cover ranged from 0 to 100%.

The submersed macrophytes found in the IDR, in order
of greatest to least average percentage of cover, were
eurasian watermilfoil, western waterweed, curly pondweed,
coon’s tail, sago pondweed, horned pondweed, bryophytes,
and leafy pondweed. (Figure 3). All of these species are
native to California, except eurasian watermilfoil and curly
pondweed. The percentage of sampling points in which
each taxon was present followed a similar pattern, but

TABLE 2. SUMMARY STATISTICS FOR PREDICTOR VARIABLES.

Predictor Variable Variable Type Average1 Standard Deviation Range No.

Water velocity (m s�1) Continuous 0.17 0.22 0.05–1.81 103
Depth (m) Continuous 1.04 0.74 0.15–3.80 103
Sun hours-yearly (kWh m�2 d�1) Continuous 3.58 1.27 0.95–4.87 102
Sand (%) Continuous 58 23 15–88 24
Silt (%) Continuous 28 18 5–64 24
Clay (%) Continuous 15 6 6–30 24
Sediment N (total %) Continuous 0.097 0.064 0.023–0.347 26
Sediment C (total %) Continuous 1.13 0.64 0.21–3.50 26
Sediment nitrate (lg g�1) Continuous 0.15 0.15 0.07–0.80 26
Sediment ammonium (lg g�1) Continuous 37.4 42.9 0.9–191 26
Sediment soluble P (lg g�1) Continuous 6.8 3.12 1.4–15.5 23
Substrate (qualitative scale) Ordinal 1 — 1–5 87
Position Categorical — — Right, middle, left 103
System Categorical — — Lake Solano, Putah Creek 103
1Averages are arithmetic means, except for ‘‘substrate,’’ which is the modal value.

Figure 2. Histogram of the percentage of cover by nuisance submersed
macrophytes in all 103 sampled plots in the Interdam Reach.
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western waterweed was found more frequently than
eurasian watermilfoil.

All water samples came back below detection limits (0.05
mg L�1) for ammonium and soluble phosphorus. Water
nitrate values were 0.12 mg L�1 and 0.09 mg L�1 at upstream
and downstream transects, respectively, in Putah Creek.
Water samples from the upstream and middle points in

Lake Solano both had nitrate concentrations of 0.06 mg L�1,
whereas the downstream sample was below detection limits.

Vertical extinction coefficients, which measure light
reduction per unit depth, averaged 0.46 m�1 and were
similar throughout the system. This value is in the low to
middle range for freshwater lakes (Kirk 1994), indicating
relatively clear water.

Modeling results

Relative performance of all predictor variables used in
the BRT models is presented in Figure 4, and predictions of
total cover by nuisance macrophytes along the ranges of
each of the six most important predictor variables are
shown in Figure 5. The most important physical factors
associated with nuisance submersed macrophyte growth in
the BRT models were those associated with light availability
(sun hours and water depth) and flow (water velocity and
substrate class).

Yearly mean sun hours—the average daily solar radiation
reaching a location over 1 yr (Figure 5A)—was the most
important predictor variable for nuisance macrophyte
cover in the BRT models, with 24.7% of the explanatory
power. Therefore, this study joins others that have found
light availability to be one of the most important predictors
of macrophyte abundance in streams (e.g., Canfield and
Hoyer 1988, Ali et al. 2011, Wood et al. 2012). Because
negative correlations between riparian shading and sub-

Figure 3. Occurrence of nuisance submersed macrophyte taxa throughout
the Interdam Reach. Dark bars show the percentage of sampling points in
which a taxon was present, and light bars show average percentage of cover
across sampling points.

Figure 4. Relative importance of 18 variables (see Table 2) used in the boosted regression tree models for predicting nuisance macrophyte abundance.
Relative importance of a variable describes the proportion of variation in the data explained by that variable relative to all other variables in the model.
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mersed macrophyte abundance have been identified by
numerous studies (e.g., Madsen and Adams 1989, Köhler et
al. 2010, Julian et al. 2011), increasing riparian shading has
been recommended as a management strategy for reducing
submersed macrophyte growth (Dawson and Kern-Hansen
1979, Anderson 2011). The importance of sun hours in our

study suggests reducing incident light levels in the IDR
should be prioritized. However, sun hours were positively
associated with greater macrophyte cover only up to
approximately 2.4 kWh m�2 d�1, above which greater solar
radiation was predicted to have little effect on macrophyte
cover (Figure 5A). At sampling points with sun hours of

Figure 5. (A–F) Panels show predicted nuisance macrophyte percentage of cover over the range of each of the top six predictor variables. Values were
generated from 150 boosted regression tree models fitted to bootstrapped samples from the original data. Means and confidence intervals came from
averaging over all models; 50 and 95% confidence intervals were based on 25 and 75% quantiles and the 2.5 and 97.5% quantiles, respectively. Tick marks
at the top of plots A, D, E, and F show the distribution of observed points.
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approximately 2.4 kWh m�2 d�1 and higher, macrophyte
cover was predicted to be around 80%. Below this,
macrophyte cover was predicted to be around 65% or less.
A value of 2.4 kWh m�2 d�1 corresponds to approximately
50% canopy cover, although orientation of canopy cover
influences this calculation. Thus, increasing riparian shad-
ing in this system could be effective in reducing macrophyte
abundance but only in areas where achieving high levels of
canopy cover are possible.

Another factor associated with light availability in this
relatively shallow, clear system is water depth, and this was
the fourth most important factor in the BRT models with a
relative importance of 15.6%. Depths between 0.3 and 2.4 m
showed relatively little difference in predicted macrophyte
cover (Figure 5D). A small reduction in macrophyte cover
was predicted at the shallowest depths, which may be due to
yearly water level fluctuations that cause shallow depths to
dry out at certain times of the year. However, in general,
nuisance submersed macrophyte cover was predicted to
decrease with increasing depth, but only at depths exceed-
ing 2.4 m. The similar predicted macrophyte cover over a
range of shallow depths suggests that, as with sun hours,
light is probably only limiting macrophyte growth below a
threshold level. Given a typical amount of light at the
surface of unshaded water in the summer in central
California (~ 1,900 lmol m�2 s�1 PAR) and the average
vertical extinction coefficient of 0.46 m�1 for the IDR, a
depth of 2.4 m corresponds to around 625 lmol m�2 s�1

PAR. This value is within the range of typical light
saturation points for submersed macrophytes (Van et al.
1976, Kirk 1994). Therefore, at depths less than 2.4 m, plants
may be receiving sufficient PAR, and dredging to increase
water depth may reduce the growth of problem macro-
phytes through light limitation.

Factors associated with flow (water velocity and substrate
texture) were also important predictors in the BRT models.
Water velocity itself had a relative importance of 4%, and
BRT model predictions show a slight negative correlation
with macrophyte cover (Figure 5F). At the time of sampling,
80% of points had water velocities of 0.25 m s�1 or less, with
41% being below detection limits, indicating relatively low
water velocities throughout the IDR. Because the water
velocity data used in the BRT models were collected at
single time points, they do not reflect the full range of
velocities that occur intra-annually and interannually.
However, they do represent an approximation of relative
water velocities across sampling points within the IDR.

Previous studies have found complicated, and sometimes
contradictory, effects of water velocity on submersed
macrophyte growth (reviewed in Madsen et al. 2001). At
lower ranges, increasing water velocity may enhance growth
rates by increasing gas and nutrient exchange (Westlake
1967, Madsen and Sondergaard 1983); however, high water
velocity can remove fine sediments that are favorable for
macrophyte growth and physically remove, damage, or
stress macrophytes and their propagules (Madsen et al.
1993, Riis and Biggs 2003).

In this study, substrate class was a better indicator of flow
rates over the long term than water-velocity measurements
because faster flows remove fine sediments and leave

coarser materials behind over time, whereas slower flows
allow sediments to settle out. The finest and coarsest
substrates (soft substrate and boulders) were found to be
the second and third most important factors in the BRT
models with 20.5 and 19.3% of the importance, respectively.
Soft substrate was positively correlated with nuisance
macrophyte cover (Figure 5B), whereas boulders were
negatively correlated (Figure 5C). Most sampling points
(62%) contained soft substrate, whereas only 17% had
boulders.

Of course, in addition to being an indicator of water flow,
substrate class itself is important to macrophyte abundance
because larger classes (rocks and boulders) provide a less-
hospitable rooting medium (Sculthorpe 1967). Interestingly,
although sediment texture has been shown to influence
growth rates of submersed macrophytes (Barko and Smart
1986), the quantitative measures of particle-size distribution
in the sediment (percentage of sand, silt, and clay) were not
important predictors in the BRT models.

The accumulation of fine sediments in the IDR may be
caused, at least in part, by the moderation of flows between
the Monticello and Putah Diversion dams. Periodic high-
flow events are known to reduce macrophyte proliferation
(Lacoul and Freedman 2006), and planned ‘‘flushing flows’’
to remove sediments and vegetation have been used
successfully to control macrophytes in flow-regulated rivers
(Rorslett and Johansen 1996, Merz and Setka 2004, Batalla
and Vericat 2009). Such planned dam releases may be a
viable solution for reducing nuisance macrophyte growth in
the IDR as well, although downstream effects are important
to consider.

Whether sediment nutrients have an important role in
controlling submersed macrophyte abundance is contro-
versial. Sediment fertilization in experimental conditions
often results in increased growth of submersed macrophytes
(e.g., Best et al. 1996; Carr and Chambers 1998). However,
when background nutrient levels are high in situ, other
factors, such as light and carbon dioxide availability, often
trump the importance of nutrients in limiting macrophyte
growth, and it may only be in oligotrophic systems that
sediment nutrients have an influential role in macrophyte
abundance (Barko et al. 1991, Carr et al. 1997). Of the
sediment nutrients measured in this study—nitrate, ammo-
nium, total N, total C, and soluble P—only sediment total N
was an important predictor of nuisance submersed macro-
phyte growth (7.0% relative importance). However, a
reduction in cover was only predicted to occur below
0.05% (Figure 5E), and only three sampling points of 26
were at or below 0.05% N. Because our models are based on
correlations, we cannot distinguish whether low sediment N
causes lower macrophyte growth or whether decreased
macrophyte growth causes less accumulation of sediment N.
However, one might expect that if the latter were true, a
linear relationship would be detected, instead of the more
asymptotic relationship that was predicted in the BRT
models.

The relative importance of the remaining predictors was
less than 2%. Notably, system was among these less-
important predictors, indicating that sampling differences
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between the Lake Solano and Putah Creek sections of the
IDR did not strongly affect model predictions.

Evaluation of model performance using the .632 boot-
strap method yielded an R2 of 0.60. The models tended to
underpredict high values and overpredict low values, as seen
in Figure 6. This occurs for two main reasons: first, with
binomial data, predicting extremes often results in over-
fitting, and it’s ‘‘safer’’ to predict intermediate values;
second, averaging over 150 predictions smooths out more
extreme predictions that might arise in only a subset of
models.

Management implications and conclusions

Overall, we found a high abundance of nuisance
submersed macrophytes in the IDR, which can be attributed
largely to the high percentage of shallow, unshaded aquatic
habitat, with low to moderate water velocity and fine
sediments. Perhaps the best solution for addressing these
factors would be narrowing and deepening the main
channel of the IDR, particularly in Lake Solano and
planting canopy-forming vegetation along the banks. This
would decrease light availability, increase water velocity
(thus decreasing fine sediments), and also decrease the total
amount of available habitat for submersed macrophytes.
Increased shading and faster transport of water through the
IDR, which comes from the hypolimnetic discharge from
the Monticello Dam, would also decrease water tempera-
tures. Although not modeled in this study, lower water
temperatures are associated with reduced macrophyte
growth rates and reproduction (Barko and Smart 1981,
Barko et al. 1982, Lacoul and Freedman 2006). Therefore,
channel modification, although resource-intensive in the

short term, may be the most sustainable approach to
reducing problematic macrophyte growth in the IDR.

Identifying and understanding the primary drivers of
nuisance macrophyte abundance is important for prioritiz-
ing management actions in regulated streams and con-
structed waterways. Using BRT as a modeling approach
resulted in a high level of in-sample predictive accuracy (R2

¼ 0.60) and enabled us to find important, biologically
meaningful thresholds in our predictor variables, which
might not have been discovered by more traditional linear-
modeling approaches. Because the most abundant sub-
mersed macrophyte species identified in this study were
cosmopolitan in distribution, our findings have relevance to
managers grappling with macrophyte overabundance
worldwide. To our knowledge, our study represents the
first use of BRT in identifying and modeling the most
important factors predicting submersed macrophyte cover.
A similar approach could be useful for managers of many
types of wetland and aquatic systems looking to understand
and apply limited resources to a variety of nuisance taxa.
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