Photosynthesis and Growth of the Filamentous Blue-green Alga *Lyngbya birgei* in Relation to its Environment

SVEN BEER, WILLIAM SPENCER AND GEORGE BOWES

ABSTRACT

*Lyngbya birgei* G. M. Smith is a filamentous blue-green alga causing increasing weed problems in the Southern U.S. In the summer, standing stock biomass values of up to 12.0 and 1.8 kg/m² were measured for benthic growth and floating mats, respectively. The net photosynthetic rate of this alga had a high temperature optimum, low light requirement, and was O₂ insensitive up to 200% of air-equilibration O₂ levels. In addition, *Lyngbya* was an efficient HCO₃⁻-user, showing saturation of photosynthesis at 0.3 mM. In the laboratory, growth under lake-like conditions of light and temperature was saturated at 2 mM HCO₃⁻, a concentration commonly found in lakes containing *Lyngbya*. The "opportunistic" photosynthetic traits, which may be the basis for *Lyngbya*’s success, are discussed with respect to environmental conditions typically prevailing in dense *Lyngbya* mats.

Key words: pH, bicarbonate-utilization, temperature, light, biomass, competition.

INTRODUCTION

It has become apparent during the past few years that filamentous algae, including blue-greens (Cyanobacteria), increasingly contribute to aquatic weed problems in the southern U.S. This trend is substantiated by records of yearly increases in coverage by filamentous algae in several Florida lakes (12, 13, 14). In addition, aquatic plant managers have reported limited success in controlling these plants with herbicides labeled for aquatic use (e.g. P. Myers, pers. comm.).

Among the blue-green filamentous algae causing noxious growth in the midwest are the genera *Oscillatoria* and *Lyngbya* (7). Similarly, in a preliminary survey of four southern Georgia and Florida lakes containing large amounts of filamentous algae (July, 1985), we found *Lyngbya birgei* to be the predominant species. Two of the lakes had previously been successfully managed with herbicides to control angiosperms. *Lyngbya birgei* was also present in a fifth, *Hydrilla*-dominated, lake although in small amounts. Thus, it appears that the growth of this species is becoming a major nuisance in several bodies of water.

The literature contains little information on the eco-physiology of filamentous blue-green algae such as *Lyngbya*. It is of relevance, however, to note that several species of laboratory-cultured unicellular blue-greens possess an efficient system to actively take up exogenous dissolved inorganic carbon (DIC) in the form of HCO₃⁻ (5). This trait, if present also in the filamentous forms, would be advantageous in stagnant waters of high pH where DIC diffusion rates are low and HCO₃⁻ is the predominant DIC source. Indeed, it has been noted that *Lyngbya* thrives in water of high pH (16).

It is not clear whether algal species such as *Lyngbya* directly compete with, and displace, macrophytes such as *Hydrilla* or grow opportunistically in niches cleared of vascular species by successful management. In any event, once established, a filamentous algal mat could potentially by itself augment the high pH conditions favoring its growth, and thus impede the re-establishment of indigenous species.

The aim of this work was to investigate the photosynthetic and growth responses of *Lyngbya* under conditions prevailing in *Lyngbya*-infested lakes. Such data should provide initial indications as to the strategies of *Lyngbya* growth and infestations in lakes of the Southern U.S.

MATERIALS AND METHODS

Field studies. Biomass was determined for benthic growth and floating mats in five lakes or ponds (Lake Blackshear, Crisp County, Georgia; Horseshoe Lake, Polk County, Florida; Ewing Pond, Polk County, Florida; Hammock Pond, Alachua County, Florida; Newinns Lake, Alachua County, Florida). The plants were collected from inside 0.25 m² quadrats placed on the bottom as well as on the floating mat. Samples were thoroughly rinsed of debris before being drip dried and weighed (fresh weight, FW), and then oven dried (80°C) and weighed (dry weight, DW).

At the time of sampling, temperature, quantum irradiance, O₂ concentration and pH were measured both in the floating mat and open water. These measurements, as well as titrations and calculations of HCO₃⁻, CO₃²⁻ and CO₂ concentrations, were also performed in Lake Blackshear on a diel basis.

Laboratory studies. Plants were grown in 1 l Erlenmeyer flasks at 30/22 °C (day/night), a 14-h photoperiod and a quantum irradiance of 200 μmol/m²-s (400-700 nm). Each flask contained 0.1-0.2 g FW initially. The growth medium was a 5% (v/v) Hoagland solution (6) containing 5 mM NaCl to which, in some cases, 1, 2 or 10 mM NaHCO₃ was added. These growth solutions were changed every other day. Plants were blotted dry and weighed every third day over a three week period, and growth was expressed as the relative growth rate.

The responses of net photosynthetic rate to light, temperature, O₂ concentration, pH and DIC concentration were measured in a Hansatech O₂ electrode system. The
standard conditions used were 30°C, 200 μmol/m²s quantum irradiance, and 1.0 mM HCO₃⁻ at pH 8.05. Routinely, 20-50 mg of Lyngbya filaments were incubated in 2.5 ml of the Hoagland solution in the O₂ electrode system. In experiments starting with more than 1 mM HCO₃⁻, O₂ levels in the experimental solution were reduced to about 80 μM by N₂ sparging before closing the system and starting measurements. In some cases, N₂, O₂ or air was bubbled through the system in order to provide low, high, or air-equilibrated (246 μM at 30°C) O₂ levels prior to measurements. Because of the alkaline pH, the total DIC concentration was lowered by less than 5% during such sparrings. Photosynthetic rates were calculated from the slopes of the O₂ evolution graphs.

Levels of DIC were varied in two ways. In the first, 5% Hoagland solutions were prepared with the addition of 0.05, 0.10, 0.25 and 2.0 mM NaHCO₃. These solutions were sparged, at 30°C, with air containing 340 μl CO₂/l for at least 15 h. When a final stable pH was attained, the solutions had reached equilibrium between HCO₃⁻, dissolved CO₂ and air-CO₂. The final pH values were within 0.1 pH unit of the calculated values, the latter being 6.75, 7.05, 7.45 and 8.35, respectively. By this method, different HCO₃⁻ concentrations were prepared while maintaining the dissolved free CO₂ concentration at air-equilibrium levels (11.2 μM at 30°C). This method has been described in more detail previously (2). To retard pH changes which would alter the balance between HCO₃⁻ and CO₂ during photosynthesis, 20 μl aliquots of HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) for pH values below 7.5 and TRIZMA BASE (tris(hydroxymethyl)aminomethane) above 7.5, at the appropriate pH, were injected into the O₂ system immediately after closing it to give a final concentration of 10 mM.

In the second technique, the HCO₃⁻ concentration was varied by injecting various amounts of Ba(OH)₂ into the experimental solution, during steady state photosynthesis, while monitoring pH as well as O₂ evolution. The initial 5% Hoagland solution was prepared with 1 mM NaHCO₃ (pH 8.05 at 30°C). Using this system, it was possible to determine photosynthesis solely as a function of the HCO₃⁻ concentration, because the free CO₂ concentrations were negligible. This method also has been described earlier (2). A computer program (“CARBON”) was used to calculate concentrations of the various DIC forms as a function of pH, temperature, total DIC (or CO₂ concentrations of the air phase) and ionic strength for both the first (open) and second (closed) equilibrated system. This program is available upon request.

Chlorophyll a was extracted in N,N-dimethyl foramide. The concentrations were measured spectrophotometrically and calculated according to Moran (9).

**RESULTS**

The Lyngbya biomass usually occurred both attached to the hydrosol and as floating mats. The in situ measured biomass varied from 0.7 to a high of 13.8 kg/m². In all cases, much more biomass occurred on the bottom than in the floating mats. Lyngbya thus showed variable amounts of plant material in all lakes studied (Table 1). Microscopic examination revealed that at least 95% of the plant material in the mats was Lyngbya birgei. The data shown from Lake Blackshear would suggest that substantially greater biomass occurred during the summer months. The mean DW/FW ratio of Lyngbya was 0.41. With only one exception, the daytime pH was alkaline, even in open water.

Diel fluctuations in various environmental parameters of a Lyngbya mat in Lake Blackshear during late summer are shown in Figure 1. Both temperature and O₂ concentrations in the mat increased drastically during the day, but then declined during the late afternoon and evening (Fig. 1A). The O₂ concentrations were well above air equilibrium levels between 8:30 and sunset, reaching a high at noon of over 200% air equilibration. A continuous increase in pH throughout the day was paralleled by decreasing HCO₃⁻ concentrations as CO₂ was being formed; free CO₂ was rapidly reduced to below measurable levels (<1 μM) following the first few hours of daylight (Fig. 1B). Typical quantum irradiances found below floating Lyngbya mats were 25-50 μmol/m²s on sunny days when the surface irradiance approached 2000 μmol/m²s.

Table 2 shows the relative growth rates as a function of DIC concentration for plants grown in a controlled environment chamber under temperature and photoperiod conditions similar to those encountered during the summer in Florida lakes. In one experimental series, pH was allowed to drift as in lake situations within a Lyngbya mat. In the other series, pH was maintained with buffers. No significant difference in growth rates were detected between buffered and non-buffered solutions. Growth occurred even in solutions lacking added HCO₃⁻, probably as a result of dissolved air CO₂. However, a four-fold increase in growth was found upon addition of 2 mM HCO₃⁻. A higher level of HCO₃⁻ did not further enhance growth rates.

The photosynthetic response of Lyngbya to light, at saturating DIC levels, revealed low compensation and saturation quantum irradiances of 20 and 150 μmol/m²s, respectively (Fig. 2A). Dark respiration rates were about 25% of the maximum photosynthetic rates. In a similar experi-
Table 3: O$_2$ effects on laboratory-grown *Lyngbya birgei* net photosynthetic rates (PS) at two different DIC concentrations. Data are means of four measurements ± S.D. Chl a content averaged 1.81 ± 0.31 mg/g FW.

<table>
<thead>
<tr>
<th>DIC conc. (mM)</th>
<th>O$_2$ conc. (µM)</th>
<th>O$_2$ in air (%)</th>
<th>Net PS rates (µmol O$_2$/gFW•h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>140-170</td>
<td>12-16</td>
<td>248.3 ± 26.8</td>
</tr>
<tr>
<td></td>
<td>250-270</td>
<td>20-23</td>
<td>254.8 ± 53.2</td>
</tr>
<tr>
<td></td>
<td>310-350</td>
<td>26-30</td>
<td>240.0 ± 45.0</td>
</tr>
<tr>
<td>1.0</td>
<td>80-120</td>
<td>7-10</td>
<td>284.8 ± 52.0</td>
</tr>
<tr>
<td></td>
<td>230-270</td>
<td>20-23</td>
<td>257.8 ± 24.2</td>
</tr>
<tr>
<td></td>
<td>350-460</td>
<td>30-39</td>
<td>267.8 ± 25.2</td>
</tr>
</tbody>
</table>

The response to HCO$_3^-$ only (the second technique described in Materials and Methods). The photosynthetic rate at an air-equilibrated CO$_2$ concentration (11.2 µM at 30°C) from extrapolation to zero HCO$_3^-$ is about 40% of the maximal rates obtained at HCO$_3^-$ saturation. The HCO$_3^-$ response curve of net photosynthesis passing almost through the origin indicates a very low DIC compensation point for *Lyngbya*. A similarly low free CO$_2$ compensation point of less than 10 µl CO$_2$/l has been measured with an infra-red CO$_2$ gas analysis system (Spencer, Beer and Bowes, 1985, unpublished data).

Table 3 shows the photosynthetic response of *Lyngbya* to various O$_2$ concentrations in the experimental medium. No significant differences in net photosynthetic rate were found between low, ambient and high O$_2$ levels, at either DIC concentration utilized. The somewhat lower photosynthetic rates at 0.2 mM DIC are probably due to this DIC concentration being below the saturation requirement (cf. Fig. 3).

**DISCUSSION**

The naturally occurring standing crops of *Lyngbya* we have measured in infested lakes show, for submersed aquatic macrophytes, very high biomass values. At peak season, they are about 10-20 times higher than those reported for *Limnophila* and *Hydrophila* (15), and *Elodea* (10). With a standing crop of up to 12 kg/m$^2$, *Lyngbya* even surpasses *Hydrilla* for which maximal biomass values of 5-8 kg/m$^2$ have been reported (3, 8). Apparently *Lyngbya*, like *Hydrilla*, has the capacity to produce dense mats of vegetation at the water surface, and therefore has the potential to be a serious weed problem.

Where found in large quantities, *Lyngbya* appears in two growth states: attached to the bottom, and as floating, unattached mats. *Lyngbya* can under both these conditions be considered a monoculture since the presence of other, mostly filamentous, algae was less than 5%. Infestations of this weed appear with lush growth on sandy and silty hydrosols. When the bottom layer has acquired sufficient biomass, masses of filaments become buoyant due to entrapped O$_2$ bubbles, and float up to the surface. These floating mats can be of considerable thickness (up to 0.5 m), and may well be an important means of dispersal of the plant to different areas of the lake. Filaments on the upper side of the mat often have a bleached appearance, while those in the middle and bottom parts are of "healthy", blue-green, color. The floating mat is photosynthetically active as indicated by the high pH and O$_2$ concentration in the surface water. The data acquired indicate that seasonal changes in biomass take place with a peak occurring in the summer months.

---

**Figure 1.** Diel fluctuations in A) temperature and O$_2$ levels and B) pH and dissolved inorganic carbon (DIC), in Lake Blackshear, Oct. 13-14, 1985, as measured in a floating *Lyngbya birgei* mat. Dashed line represents air equilibration O$_2$ concentrations at the respective temperatures.

**Table 2:** Relative growth rates (RGR) of laboratory-grown *Lyngbya birgei* at a quantum irradiance of 200 µmol/m$^2$•s, 30/22°C day/night temperature and a 14-h photoperiod. Plants were grown in 5% Hoagland growth medium with or without the addition of HCO$_3^-$ and with (+) or without (−) the addition of 10 mM buffer. Data are means of seven measurements ± S.D.

<table>
<thead>
<tr>
<th>HCO$_3^-$ conc. (mM)</th>
<th>Buffer</th>
<th>RGR (%) week$^{-1}$</th>
<th>Initial pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>−</td>
<td>10.2 ± 3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.0</td>
<td>+</td>
<td>11.4 ± 5.1</td>
<td>8.2</td>
</tr>
<tr>
<td>2.0</td>
<td>−</td>
<td>41.2 ± 7.0</td>
<td>8.3</td>
</tr>
<tr>
<td>2.0</td>
<td>+</td>
<td>45.4 ± 10.4</td>
<td>8.2</td>
</tr>
<tr>
<td>10.0</td>
<td>−</td>
<td>38.5 ± 10.0</td>
<td>8.8</td>
</tr>
<tr>
<td>10.0</td>
<td>+</td>
<td>29.4 ± 8.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Figure 2. Net photosynthetic rates of field-grown (from Lake Blackshear) Lyngbya birgei in response to A) quantum irradiance and B) temperature. Each data point represents one measurement (A) or the mean of three measurements with S.D. being <15% of the means (B). The light- and DIC-saturated rate at 30°C was 380 ± 40.5 μmol O₂/gFW·h. Chlorophyll a content average 2.11 ± 0.21 mg/gFW.

The photosynthetic light response curve for Lyngbya shows lower saturation values than found in other mat forming aquatic macrophytes, including Hydrilla (17). On the other hand, the light compensation point is in the same range as for other indigenous species, but higher than that for Hydrilla (17). The low quantum irradiance requirements of Lyngbya may explain its lush growth at the bottom, as well as its bleached appearance at the upper part of the floating mats where light levels are high.

An apparent advantage of Lyngbya photosynthesis is its high temperature optimum of at least 40°C. This likely reflects the growth response, and stands in contrast to the 25-30°C optima found for other aquatic plants including Hydrilla (1, 15). The favorable response at high temperatures correlates with the high temperatures measured in dense floating Lyngbya mats during the summer and fall months.

Lyngbya can utilize HCO₃⁻ as an external DIC source very efficiently, as shown by the low DIC levels required to saturate photosynthesis and growth. By comparison, the HCO₃⁻ level required to saturate photosynthesis in aquatic angiosperms such as Hydrilla and Myriophyllum is about tenfold higher (4,17). This conforms with a typical algal mat situation where HCO₃⁻ is virtually the only DIC source available, although its level does decrease during the day, and CO₂ levels are close to zero. The efficient HCO₃⁻ utili-
zation (or concentrating) system may, as in the unicellular blue-greens (5), give rise to high internal DIC levels which can suppress photorespiration.

Evidence for an apparent lack of photorespiration in Lyngbya can be seen in the lack of inhibition of photosynthesis in response to O$_2$ levels up to twice those of air-equilibrium values. This O$_2$-insensitivity is more pronounced than that found in other aquatic macrophytes (15). In Hydrilla, insensitivity of photosynthesis to 21% O$_2$ has been reported, but only in plants pre-adapted to summer (i.e. "stress") conditions (11). In contrast, this phenomenon was expressed by Lyngbya in field-grown plants even during the winter. The low DIC and CO$_2$ compensation points also are indicative of little, if any, photorespiratory CO$_2$ release in this organism.

There seems to be a positive relationship between many eco-physiological responses of Lyngbya and conditions prevalent in Lyngbya mats. The temperature in the mat, which from midday may exceed 30°C, would enhance Lyngbya photosynthesis. Also, the O$_2$ levels which may reach 200% oversaturation as compared with air equilibration levels at the ambient temperature, would not adversely affect net photosynthetic rates, as they would for plants that photorespire. Free CO$_2$ levels are drastically reduced in the mat during the first few hours of light as a result of both photosynthetic activity and, consequently, increases in pH. Under such conditions, it must be an advantage for the plant to utilize exogenous HCO$_3^-$ and also HCO$_3^-$ concentrations of the mat decrease throughout the day as pH rises. However, when comparing HCO$_3^-$ levels of the mat (Fig. 1) with the photosynthetic response to HCO$_3^-$ (Fig. 2), it appears that Lyngbya would be exposed to saturating concentrations of HCO$_3^-$ around midday. Later, HCO$_3^-$ levels should become limiting for photosynthesis, but even the lowest values measured (0.15 mM) would provide for some 60% of the maximum photosynthetic rate. Of course, conditions in the mat vary from day to day depending on abiotic as well as biotic conditions such as mat density. It must also be pointed out that photosynthetic rates were measured under stirred conditions in the laboratory. Therefore, the photosynthetic responses to HCO$_3^-$ may be overestimated as compared to in situ photosynthesis in the mat where stagnant conditions occur. It is clear, however, that under stagnant conditions 2 mM HCO$_3^-$ added to the growth medium provides for maximum growth rates in the laboratory. Such a high HCO$_3^-$ concentration has been found in several Lyngbya mats. Thus, the physiological responses of Lyngbya seem to be well adapted to those conditions prevailing in Lyngbya mats.

It is our working hypothesis that the "opportunist" traits of Lyngbya described in this paper enable it to successfully compete with both indigenous and exotic higher aquatic plants, when the external conditions are favorable for its growth. Such conditions of high pH and HCO$_3^-$ levels also favor the growth of Hydrilla (15). However, if Hydrilla were successfully managed by herbicide treatments, a new niche may open up for the reputedly more herbicide-tolerant Lyngbya. Once established, the dense growth of Lyngbya may prevent the original species becoming re-established. The validity of this working hypothesis has yet to be tested in controlled competition studies.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the personnel of the Georgia Veterans Memorial State Park. We also thank Victor Ramey of the Aquatic Weed Library for conducting a computer literature search on Lyngbya, and Paul Meyers for helpful directions. Support was provided in part by USDA-ARS Agreement No. 58-7B30-3-570 and the Center for Aquatic Weeds, University of Florida.

LITERATURE CITED
