Control of Coontail With Hydrogen Peroxide And Copper

STRATFORD H. KAY

Assistant Professor and Research Associate,
Center for Alluvial Plains Studies,
Delta State University,
Cleveland, Mississippi 38733

P. C. QUIMBY, JR.

Plant Physiologist and Research Leader,
Biological Weed Control Research,
Southern Weed Science Laboratory, USDA-ARS,
Stoneville, Mississippi 38776

AND

J. D. OUZTS

Associate Dean, School of Arts and Sciences and Director,
Center for Alluvial Plains Studies,
Delta State University,
Cleveland, Mississippi 38773

INTRODUCTION

For years, the major emphasis of research on noxious aquatic vegetation has been the development of new formulations and combinations of currently-existing herbicides and advances in application technology. More recently, allelopathy has been investigated as an alternative method for the biological suppression of aquatic weeds (6, 16, 19), and several allelopathic compounds have been isolated and characterized (4).

Although not yet classified as an allelochemical, a readily-synthesized, naturally-occurring, phytotoxic substance is hydrogen peroxide (H$_2$O$_2$). Hydrogen peroxide was suggested as a treatment for the control of slimes and algae in cooling towers (15) and as a noncorrosive algicide for use in systems constructed of aluminum alloys (18). Recently, Kay et al. reported a possible use for H$_2$O$_2$ as an algicide in commercial aquaculture (10). Quimby (13) first provided evidence that H$_2$O$_2$ might be useful as a herbicide for the control of submerged aquatic weeds. Quimby found that H$_2$O$_2$ (1 to 4 mM) was toxic to hydrilla (Hydrilla verticillata (L.F.) Royle) and to coontail (Ceratophyllum demersum L.), but did not significantly damage either emersed or floating aquatic vegetation at similar levels of exposure. He indicated further that guppies (Lebistes reticulatus), exposed to H$_2$O$_2$ in the presence of coontail were apparently unharmed at concentrations that were toxic to the plants; in the presence of coontail, H$_2$O$_2$ was no longer detectable in solution after four days, suggesting rapid degradation in the environment into water and oxygen. A recent report (12) also has demonstrated larvicide activity of H$_2$O$_2$ against mosquitoes (Aedes aegypti L.), suggesting a possible beneficial side effect of submerged weed control using H$_2$O$_2$ as an herbicide. The results of these studies, the commercial availability of food-grade H$_2$O$_2$ and of H$_2$O$_2$-handling equipment, and current commercial use of H$_2$O$_2$ in pre-treatment of drinking water supplies (17) and in wastewater treatment plants (3, 5, 11, 14) suggest that H$_2$O$_2$ may be suitable for use in the control of submerged aquatic vegetation with minimal adverse environmental effects.

Copper compounds are commonly used both alone and in combination with other herbicides in aquatic systems (2). Our objective was to evaluate the effect of short-term exposure of coontail to combinations of H$_2$O$_2$ with low levels of Cu.

METHODS AND MATERIALS

Coontail for these experiments was collected at Lake Bolivar County, Mississippi, during October and November 1980. At this time the plants were forming the compact, terminal winter buds, or hibernacula, that are characteristic of coontail during the winter months. Plants were held in the greenhouse in polyethylene tanks prior to experimentation. At the outset of an experiment, approximately 10-g cuttings of healthy plants with intact hibernacula were washed and weighed for each experimental unit.

A modified (7) Hoagland’s No. 1 nutrient solution (8) was diluted to 1% strength with distilled water and supplemented with 100 mg/liter NaHCO$_3$ to provide a carbon source. A 30% H$_2$O$_2$ solution was diluted to provide a 1 M stock from which dilutions were made with the nutrient solution to provide H$_2$O$_2$ concentrations of 0, 34, or 68 mg/
Liter. Cu was added to the treatment solutions in the form of copper triethanolamine complex (CuTrine Plus) at concentrations of 0.0, 0.1, or 0.5 mg/liter. All possible combinations of the above H₂O₂ and Cu solutions were prepared for a total of nine treatments.

A pre-weighed plant was placed for 1 h into each 3.79 liter jar with 3 liters of treated nutrient solution. Previous work by Quimby (13) had established a 1-h exposure as the minimal contact period required for control of coontail with H₂O₂. Plants were then washed in distilled water, transferred to jars containing 3 liters ofuntreated nutrient solution, and covered with clear plastic film to retard evaporation. Plants were placed in controlled-environment chambers with a 14-h photoperiod and 25/20 °C day/night temperatures. Photon flux densities were either 420 (1 test) or 450 (2 tests) μE m⁻² s⁻¹. Light levels were measured with a Lambda Model LI-185 quantum meter.

Each study was established in a completely random design having nine treatments and three replications per treatment. Plant responses were evaluated after 4, 7, 10, and 14 days using a visual rating scale of 0 to 10, where 0 represented no damage and 10 represented 100% kill. Qualitative factors used in visual evaluations included browning and necrosis of tissues, leaf abscission, and general disintegration of the plant stems. For practical application, a visual rating of seven was established as an acceptable level of control. At the termination of each study, the remaining intact plant material was dried for 48 h at 70 °C and weighed. All data were subjected to an analysis of variance, and treatment means were compared using the Duncan’s Multiple Range procedure. Initial data analyses indicated that there were no significant differences in response among the three experiments. The data, therefore, were combined and statistically analyzed together.

RESULTS AND DISCUSSION

The effects of all treatments with H₂O₂ and Cu, alone or in combination, increased with time after the 1-h exposure period (Table 1). Maximum damage ratings for 34 and 68 mg H₂O₂/liter alone were six and eight, respectively, and were not achieved until the 14- and 10-day rating periods, respectively. Injury ratings in the 34 mg H₂O₂/ liter treatment increased almost linearly up to the 14-day rating period and possibly would have given acceptable control if the study had continued beyond 14 days. Treatment with 0.5 mg Cu/liter alone gave a damage rating of eight after seven days, with little further increase in damage thereafter. Fourteen-day ratings for the 0.1 and 0.5 mg Cu/ liter treatments were three and eight, respectively. Effective control was not obtained after 14 days with 0.1 mg Cu/ liter alone.

Combinations of 34 mg H₂O₂/liter with 0.5 mg Cu/ liter or 68 mg H₂O₂/liter with either 0.1 or 0.5 mg Cu/liter reduced injury ratings ≥ eight by seven days after exposure. The combination of 34 mg H₂O₂/ liter with 0.1 mg Cu/liter gave a mean damage rating of eight at the 14-day rating period, which was not significantly different from the injury produced by the 68 mg H₂O₂/liter plus 0.5 mg Cu/liter treatments (X = nine). After 14 days, treatment with either 68 mg H₂O₂/liter or 0.5 mg Cu/liter gave dry weight reductions that were statistically similar (p = .05) to those produced by treatment with 34 mg H₂O₂/liter plus 0.5 mg Cu/liter or 68 mg H₂O₂/liter with either 0.1 or 0.5 mg Cu/liter.

The data indicate that the presence of Cu reduced the time needed to achieve acceptable control. Injury ratings ≥ seven were observed after four days in the combination treatments of 34 mg H₂O₂/liter plus 0.5 mg Cu/liter or 68 mg H₂O₂/liter plus either 0.1 or 0.5 mg Cu/liter. After seven days, injury ratings of ≥ seven were also observed for the 0.5 mg Cu/liter, 68 mg H₂O₂/liter, and 34 mg H₂O₂/liter plus 0.1 mg Cu/ liter treatments. The combination of 34 mg H₂O₂/liter with 0.1 mg Cu/liter produced injury ratings that suggested synergism. With other combination treatments, however, the observed effects of H₂O₂ and Cu were additive. With time of one week or more, similar damage was produced by either 68 mg H₂O₂/liter or 0.5 mg Cu/liter alone. Combining H₂O₂ with 0.1 mg Cu/liter accelerated the control of coontail. The use of H₂O₂ alone could provide control while circumventing potential build-up of Cu in the aquatic environment and provide an alternative to the use of Cu in aquacultural systems in which direct Cu toxicity is sometimes a problem (1, 9).

ACKNOWLEDGMENTS

The authors are grateful for the excellent technical assistance of Ms. Kathy P. Bachman. We thank Ms. Bernadine Ward for typing of the manuscript.

LITERATURE CITED