Hydrilla Silage Production, Composition And Acceptability1,2

LARRY O. BAGNALL, K. E. DIXON, and J. F. HENTGES, JR.

Associate Professor of Agricultural Engineering, Graduate
Assistant and Professor of Animal Science, Respectively,
Institute of Food and Agricultural Sciences,
University of Florida, Gainesville, FL 32611

ABSTRACT

Hydrilla (Hydrilla verticillata Royle) was pressed and ensiled in lots ranging from 0.4 to 2000 kg to determine characteristics and acceptability of silage to cattle. About 40\% of the harvested dry matter was available for feeding after processing and storage. Adequate supplementary fermentable carbohydrate (dried citrus pulp (DCP), ground shelled corn (GSC)) and propionic acid enhanced product quality. Steers readily accepted hydrilla silage fermented with adequate levels of dried citrus pulp, ground shelled corn, and propionic acid. Steers consumed all of the hydrilla silage and 'Coastal' Bermudagrass (Cynodon dactylon L.) hay offered them, but only 67\% of the hydrilla hay. It is technically possible to utilize hydrilla by ensiling and feeding to cattle.

INTRODUCTION

Hydrilla infests up to 300,000 ha of Florida's fresh waters3 and is the most serious and rapidly growing aquatic weed problem, with its range of adaptation extending far to the North (9). Mechanical control of hydrilla appears to be economically comparable to chemical control (1). One potential use of the hydrilla harvested in mechanical control

1Florida Agricultural Experiment Station Journal Series No. 905.
2Use of brand names does not constitute endorsement by the Florida Agricultural Experiment Station.
3Burkhalter, A. P. 1977. Personal Communication.

operations is as cattle feed (6, 7). Efforts to feed dried hydrialla have had inconsistent results (10, 13), and recent energy cost increases may have made the cost of drying prohibitive.

Corn, sorghum, grass, and a variety of products are ensiled for storage and used as animal feeds. Ensiling consists of anaerobic storage of a biological material of appropriate moisture and carbohydrate content and sufficient lacto-bacilli inoculum (natural or introduced) to lead to rapid lactic acid-producing fermentation. The lactic acid suppresses further biological activity and produces a palatable product.

Aquatic plants have not ensiled consistently (3, 4, 12, 14). Ensiled northern lake weeds were not palatable (12, 14), but waterhyacinth (Eichhornia crassipes (Mart.) Solms.) has been successfully ensiled (3, 4, 8) and fed to beef cattle and sheep (5, 8, 11).

The objectives of this study were to ensile hydrialla, determine the acceptability and voluntary intake of ensiled hydrialla and sun-cured hydrialla by mature ruminating cattle, and determine the chemical composition of the processed plants.

METHODS AND MATERIALS

Hydrialla was harvested from Orange Lake, about 24 km south of Gainesville, in late August to early October of 1976, by hand for preliminary evaluation and by an Aquamarine harvester* for animal evaluation.

The hydrialla, initially at 7.5 ± 3.0% (95% confidence interval) dry matter content, was screw-pressed to reduce moisture content. Fifteen kilograms was pressed in a 10 cm press for preliminary trials, 480 kg was pressed in a 20 cm press for preliminary animal acceptability trials, and 15,700 kg was chopped by forage harvester and pressed in a 30 cm press for animal acceptability and consumption trials. Press performance is shown in Table 1.

The pressed hydrialla (PHV) was mixed with dried citrus pulp (DCP), ground shelled corn (GSC), and Chemstor III* (CS), as shown in Table 2, and packed into closed containers. Hydrialla was ensiled in 450 ml wide-mouth polyethylene bottles for preliminary evaluation, and in 208 1 drums and 1.2 x 2.4 m culvert silos for animal evaluation. Mean density of the silage in the bottles was 868 kg/m³ and of that in the culverts was 808 kg/m³. During storage, the silage temperature, drainage losses, and pH were monitored by imbedded thermocouples, trapped collection, and electrical measurement of collected drainage, respectively. Bottle samples were stored 30 days, barrel silages were stored 113 days (119 days to feeding), and culvert silages were stored 133 days. After storage, the silos were opened and the contents were examined and prepared for feeding.

Experiments with cattle tested the acceptability of four treatments of silage from barrel (Experiment 1) and culvert (Experiment 2) silos. A group of four Hereford x Angus crossbred steers averaging 552 kg was offered cafeteria style access to each silage treatment; 9 kg/head/day for Experiment 1 and 34 kg/head/day for Experiment 2. Acceptability was measured by the percentage of each treatment consumed during the entire study because the order of preference for treatments did not change during each experiment. The duration of each experiment was determined by the available silage and was 5 days for Experiment 1 and 12 days for Experiment 2. Experiment 3 utilized the same

*The authors are grateful to the U.S. Army Corps of Engineers and Dr. W. T. Haller for providing freshly harvested hydrialla and sun-cured hydrialla hay.

*Celanese Chemical Co.; 67% propionic acid, 10% formaldehyde, 23% inert ingredients.

Table 1. Screw press performance while preparing hydrialla for ensiling.

<table>
<thead>
<tr>
<th>Press, cm</th>
<th>10</th>
<th>20</th>
<th>Vincent 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>84A</td>
<td>88B</td>
<td>30</td>
</tr>
<tr>
<td>Pressure, kPa</td>
<td>70</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Speed, rev/min</td>
<td>37</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>Feed Rate, kg/hr</td>
<td>150</td>
<td>430</td>
<td>2600</td>
</tr>
<tr>
<td>Mass Retention, %</td>
<td>28</td>
<td>65</td>
<td>47</td>
</tr>
<tr>
<td>Dry Matter Retention, %</td>
<td>76</td>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>Water Expression, %</td>
<td>73</td>
<td>37</td>
<td>55</td>
</tr>
<tr>
<td>Cake Dry Matter Content, %</td>
<td>14</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 2. Formulation of silages stored in bottles, barrels, and culvert silos.1

<table>
<thead>
<tr>
<th>Silo type</th>
<th>Mass (g)</th>
<th>PHV (g)</th>
<th>DCP (g)</th>
<th>CS (kg)</th>
<th>GSC (kg)</th>
<th>Dry Matter (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>411</td>
<td>411</td>
<td>15</td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>414</td>
<td>414</td>
<td>15</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>385</td>
<td>15</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>418</td>
<td>402</td>
<td>15</td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>102.4</td>
<td>100.0</td>
<td>15</td>
<td></td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>60.0</td>
<td>15</td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>104.0</td>
<td>100.0</td>
<td>15</td>
<td></td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>15</td>
<td></td>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2010</td>
<td>1970</td>
<td>45</td>
<td></td>
<td>54</td>
<td>273</td>
</tr>
<tr>
<td>2</td>
<td>1940</td>
<td>1910</td>
<td>25</td>
<td></td>
<td>25</td>
<td>237</td>
</tr>
<tr>
<td>3</td>
<td>1970</td>
<td>1910</td>
<td>25</td>
<td></td>
<td>25</td>
<td>251</td>
</tr>
<tr>
<td>4</td>
<td>1610</td>
<td>1580</td>
<td>25</td>
<td></td>
<td>25</td>
<td>192</td>
</tr>
</tbody>
</table>

1 Abbreviations are PHV = Pressed hydrialla, DCP = Dried citrus pulp, CS = Chemstor III, GSC = Ground shelled corn.

2 Whole hydrialla, not pressed.
steers in a 6-day study to compare the acceptability of hydridla silage, hydridla hay and Coastal Bermudagrass hay.

Hydridla hay was prepared by hand-spraying hydridla thinly on a pangolagrass (Digitaria decumbens Stent.) pasture. It did not dry uniformly, so over-dried parts suffered substantial leaf loss and under-dried parts mold and spoilage. The grass hay was from an average late summer cutting of fertilized, mature Coastal Bermudagrass grown on Hague loamy fine sand in Marion County, Florida.

Samples from two barrel silos, four culvert silos, hydridla hay and grass hay were weighed, dried at 60 C, ground and stored at room temperature for laboratory analysis. Duplicate analyses for moisture, ash and crude protein were made according to standard methods (2).

RESULTS AND DISCUSSION

After 24 hours of storage in barrels, the temperature of the acid-treated and whole hydridla was 29 C, that of the pressed hydridla was 27 C, and that of the hydridla with DCP was 26 C, 2 to 5 C above average ambient temperature. After 53 hours of storage, all temperatures were identical and did not differ from each other by more than 1 C or from average ambient temperature by more than 2 C. The culvert silo with the highest level of DCP and no CS had a temperature of 34-35 C, 8 C above average ambient, for 4 days after filling, while the other culvert silos were at ambient temperature. Generally, temperature rise caused by the biological activity in the silage was small and brief.

Drainage pH histories of the barrel and culvert silos are shown in Figures 1 and 2, respectively. Generally, the drainage pH, representative of the silage pH (11), of silages containing DCP, fell for 10 to 30 days, then remained stable at approximately 5.0. The final and only measured pH of drainage from silage with DCP and CS, in barrel 1, was 5.5. The pH of the whole hydridla in barrel 2 rose to 7.0 after the initial fall, as shown in Figure 1. The pH of the hydridla with corn in culvert 3 rose abruptly to 6.2 at 45 days, then gradually fell to 5.4, as shown in Figure 2. All pH levels were higher than is common for high quality silage (3.5-4.0) of common terrestrial crops, which would normally indicate low silage quality.

Drainage histories of the culvert silos are shown in Figure 3. The whole hydridla drained profusely throughout the storage period. The pressed hydridla drained about 2/3 as fast, which was still excessive. The pressed hydridla with 4% DCP did not begin to drain until the 17th day of storage and only lost 12% of its initial water. The 113-day drainage from the three silages increased with initial dry basis moisture content:

\[D = -22.3 + 0.54 \, M \quad (r = 1.00) \]

where
- \(D \) = 113-day drainage, % of initial water,
- \(M \) = initial moisture content, %, dry basis, and
- \(r \) = correlation coefficient

The acid-treated (CS) hydridla did not begin to drain until the 91st day and drained substantially less than the other silages, even though its moisture content was higher than that of the 4% DCP silage. There was no drainage from the bottles. Leaking base joints on the culvert silos allowed dispersed leakage and prevented collection of all the drainage.

The bottled hydridla without DCP was putrid and that in bottle 2 had decomposed to the extent that there was free fluid in the bottle. The final decomposition had taken place in the last few months of storage. The bottled hydridla with DCP had acceptable odor, color and texture, but had some mold in the top few centimetres of silage, from a poor lid seal or from repeated opening.

![Figure 1. History of pH of fluid draining from hydridla ensiled in barrels. Abbreviations: HV = whole unpressed hydridla (Barrel 2), PHV = pressed hydridla (Barrel 4), PHV + DCP = pressed hydridla with dried citrus pulp (Barrel 5).](image)

![Figure 2. History of pH of fluid draining from pressed hydridla ensiled in culverts. Abbreviations: GSC = ground shelled corn (Culvert 3), High DCP = 2.2% dried citrus pulp (Culvert 1), Low DCP = 1.4% dried citrus pulp, High CS = 0.4% Chemestr III (Culvert 2), Low CS = 0.2% Chemestr III (Culvert 4).](image)

![Figure 3. Cumulative drainage from hydridla ensiled in barrels. Abbreviations: HV = whole unpressed hydridla (Barrel 2), PHV = pressed hydridla (Barrel 4), PHV + DCP = pressed hydridla with dried citrus pulp (Barrel 5), PHV + DCP + CS = pressed hydridla with dried citrus pulp and Chemestr III (Barrel 1).](image)

The whole hydrilla in barrel 2 was completely spoiled, ranging from rank putrefaction on the top to bland and earthy through most of the mass. Spoilage on the other silages in barrels ranged from 22 to 30% and had a bland, earthy odor, similar to the best of the whole hydrilla. The odor of the usable acid-treated hydrilla was bland and very good, that of the 4% DCP silage was moderately strong and good, and that of the untreated pressed hydrilla was moderately intense and fair.

Spoilage in the culvert silos ranged from 17 to 25% and had the strong putrid odor typical of spoiled silage. Odor of the usable silages was typical of good silage. There was extensive spoilage around the doors in the sides of the culverts and around the base leaks, which should not be typical of production silos. Spoilage is primarily a surface effect and, as a percentage of the total mass, decreased with increasing silo size. It should be much smaller in properly filled commercial silos.

Retention of hydrilla during the ensiling process is shown in Table 3. Almost all of the mass in the bottles was retained, but there was a 20 to 48% loss of dry matter, converted to a 1.5 to 4.3% gain in water, by biological and chemical activity. The barrels lost 7 to 39% of their mass, much of it attributable to drainage; dry matter loss from the barrels ranged from 24 to 37%. The culverts lost 33 to 42% of their mass and 38 to 48% of their dry matter; part of this loss could have been due to poor fill accounting.

All of the silages with acceptable odor, flavor, appearance and texture had lower dry matter content at the end of storage than at the beginning, with a reduction of 2.6 ± 1.2% (95% confidence interval) during storage. Metabolic activity and drainage account for most of the dry matter loss.

Ensiling in barrels preserved 72% of the end product, 50% of the initial dry matter, or 44% of the harvested dry matter in condition suitable for feeding. Ensiling in culverts preserved 81% of the end product, 44% of the initial dry matter, or 35% of the harvested dry matter in condition suitable for feeding. Hydrilla in the culverts shrank 35 ± 12% (95% confidence interval), similar to that of some of the waterhyacinth silages (3). Final density was 774 ± 77 kg/m³, 4% lower than initial density.

In the initial (Experiment 1) animal feeding trial, steers readily accepted the silages stored in barrels. Table 4 shows that they preferred silages with low DCP + CS, high DCP, and pressed with no additive, in that order. Composition of the two most favored treatments were similar to each other and the culvert-stored silages, as shown in Table 5.

Table 3. Retention and losses of hydrilla silage under various storage conditions. Refer to Table 2 for additives and formulation of silage.

<table>
<thead>
<tr>
<th>Bottle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final mass (%) IM</td>
<td>98</td>
<td>95</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Drainage (%) IM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Final dry matter (%) IDM</td>
<td>81</td>
<td>52</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>Final dry matter content (%)</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Usable silage (%) FM</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Final volume (%) IV</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Final density (kg/m³)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barrel</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final mass (%) IM</td>
<td>98</td>
<td>67</td>
<td>81</td>
<td>67</td>
</tr>
<tr>
<td>Drainage (%) IM</td>
<td>0</td>
<td>32</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Final dry matter (%) IDM</td>
<td>76</td>
<td>75</td>
<td>69</td>
<td>63</td>
</tr>
<tr>
<td>Final dry matter content (%)</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Usable silage (%) FM</td>
<td>78</td>
<td>0</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>Final volume (%) IV</td>
<td>38</td>
<td>75</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Final density (kg/m³)</td>
<td>832</td>
<td>714</td>
<td>781</td>
<td>767</td>
</tr>
</tbody>
</table>

1 Abbreviations of units are: % IM = percent of initial mass, % IDM = percent of initial dry mass, % FM = percent of final mass, % IV = percent of initial volume.
most protein but all four treatments were rich in protein (coefficient of variation: 6%). The lowest ranked culvert-
stored silage was highest in moisture content, darkest in
color and had a foul odor different from the other three
treatments. In the literature, variation has been reported
in the protein composition of hydrilla ranging from 17% to 46% (7). One explanation for the variation could be
that the weeds were harvested from waters which varied in
nutrient availability (7). In harvesting the hydrilla used in
this study, it was observed that numerous fish were captured
which may have increased the protein values.

The third (Experiment 5) animal trial showed that the
daily allotments of grass hay and hydrilla silage were
entirely consumed, with the grass hay initially being pref-
ferred and consumed first. Near the end of the experiment,
the steers showed no preference between hydrilla silage and
grass hay. Hydrilla hay was consumed only when none of
the other feeds remained, but this may have been a re-
fection of its low quality and mold content rather than its
nutrient content.

**Table 6. Acceptability of Hydrilla silage, Hydrilla hay and Coastal
Bermudagrass hay by steers fed ad libitum (Experiment 5).**

<table>
<thead>
<tr>
<th>Feed</th>
<th>Percent Consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass Hay</td>
<td>100</td>
</tr>
<tr>
<td>Hydrilla Silage</td>
<td>100</td>
</tr>
<tr>
<td>Hydrilla Hay</td>
<td>66.8</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Cattle readily accepted well-preserved hydrilla silage,
but not low quality hydrilla hay. The vegetation must be
dewatered and supplemented with fermentable carbohy-
дрate to ensile satisfactorily.

LITERATURE CITED

1. Anon. 1976. U.S. Corps of Engineers Harvesting Hydrilla on
ing and storage of waterhyacinth silage. Hyacinth Cont. J. 12:
73-79.
tion and cattle acceptability of waterhyacinth silage. Hyacinth Cont.
J. 12:79-81.
Shirley. 1975. Comparison of pangolagrass and waterhyacinth
weed problem. Circular S-245, Agricultural Experiment Station,
University of Florida. 13 pp.
11. Kittewahid, B. 1975. Nutrient composition and digestibility of
waterhyacinth (Eichhornia crassipes, Mart) by cattle. Ph.D. Dis-
sertation, University of Florida. 114 pp.
from Minnesota. Part 5—Diet digestibility and fermentation of aquatic
plants. Bulletin 70, Water Resources Research Center, University of
Minnesota. 24 pp.
Florida. 45 pp.
Utilization of Eurasion watermilfoil. ASAE Paper 73-5510. Amer.

J. Aquat. Plant Manage. 16: 31-33